Convergence of a Generalized Gradient Selection Approach for the Decomposition Method
نویسنده
چکیده
The decomposition method is currently one of the major methods for solving the convex quadratic optimization problems being associated with support vector machines. For a special case of such problems the convergence of the decomposition method to an optimal solution has been proven based on a working set selection via the gradient of the objective function. In this paper we will show that a generalized version of the gradient selection approach and its associated decomposition algorithm can be used to solve a much broader class of convex quadratic optimization problems.
منابع مشابه
A Class of Nested Iteration Schemes for Generalized Coupled Sylvester Matrix Equation
Global Krylov subspace methods are the most efficient and robust methods to solve generalized coupled Sylvester matrix equation. In this paper, we propose the nested splitting conjugate gradient process for solving this equation. This method has inner and outer iterations, which employs the generalized conjugate gradient method as an inner iteration to approximate each outer iterate, while each...
متن کاملA Hybrid Solution Approach Based on Benders Decomposition and Meta-Heuristics to Solve Supply Chain Network Design Problem
Supply Chain Network Design (SCND) is a strategic supply chain management problem that determines its configuration. This mainly focuses on the facilities location, capacity sizing, technology selection, supplier selection, transportation, allocation of production and distribution facilities to the market, and so on. Although the optimal solution of the SCND problem leads to a significant reduc...
متن کاملA Benders\' Decomposition Based Solution Method for Solving User Equilibrium Problem: Deterministic and Stochastic Cases
The traffic assignment problem is one of the most important problems for analyzing and optimizing the transportation network to find optimal flows. This study presented a new formulation based on a generalized Benders' decomposition approach to solve its important part, i.e. user equilibrium problems, in deterministic and stochastic cases. The new approach decomposed the problem into a master p...
متن کاملGeneralized PRUNO Kernel Selection by Using Singular Value Decomposition (SVD)
INTRODUCTION Parallel Reconstruction Using Null Operations (PRUNO) is an iterative k-space based reconstruction method for Cartesian parallel imaging. One particular challenge in PRUNO is to select a set of proper nulling kernels. A group of poor kernels will lead to an ill-posed system and affect the accuracy and convergence of the algorithm. The early reported kernel selection method is simil...
متن کاملAn accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations
In this paper, an accelerated gradient based iterative algorithm for solving systems of coupled generalized Sylvester-transpose matrix equations is proposed. The convergence analysis of the algorithm is investigated. We show that the proposed algorithm converges to the exact solution for any initial value under certain assumptions. Finally, some numerical examples are given to demons...
متن کامل